travel in both directions along the string, will be reflected at the ends, and
will travel back in the opposite direction. Most of these waves interfere with
each other and quickly die out. However, those waves that correspond to the
resonant frequencies of the string will persist. The ends of the string, since they
are fixed, will be nodes. There may be other nodes as well. Some of the possible
resonant modes of vibration (standing waves) are shown in Fig, 11-40b. Gener-
ally, the motion will be a combination of these different resonant modes, but
only those Irequencies that correspond to a resonant frequency will be present.

To determine the resonant frequencies, we first note that the wavelengths of
the standing waves bear a simple relationship to the length L. of the string. The
lowest frequency, called the fundamental frequency, corresponds to one antinode  Fundamenial frequency
{or loop). And as can be seen in Fig. 11-40b, the whole length corresponds to
one-half wavelength. Thus L = $A,, where A, stands for the wavelength of the
fundamental frequency. The other natural frequencies are called overtones: for a  Overtones and harmonics
vibrating string they are whole-number (integral) multiples of the fundamental,
and then are also called harmoniecs, with the fundamental being referred to as
the first harmonie.” The next mode of vibration after the fundamental has two
loops and is called the second harmonic (or first overtone), Fig. [1-40b. The
length of the string L at the second harmonic corresponds to one complete
wavelength: L = A;. For the third and fourth harmonics, L = %AR_, and
L = 2A,, respectively, and so on. In general, we can write

na,
T

The integer n labels the number of the harmonic: n = | for the fundamental,
n = 2 for the second harmonic, and so on. We solve for A, and find

L= wheren = 1,2, 3,

2L
)L,,=’—Ie n=1223-"-. (11-19a)
To find the frequency f of each vibration we use Eq. 11-12, f = v/A, and we
see that
fu= i e nfy, n=1223,-, (11-19b)
Ay 2

where f, = /A, = ¢/2L is the fundamental frequency. We see that each reso-
nant frequency is an integer multiple of the fundamental frequency.

Because a standing wave is equivalent to two traveling waves moving in
opposite directions, the concept of wave velocity still makes sense and is given by
Eq. 11-13 in terms of the tension Fy in the string and its mass per unit length (m/1L).
That is, v = \/F;/(m/L) for waves traveling in both directions.

D CVIEAIRAEIEN Piano string. A piano string is 1.10m long and has a
mass of 9.00 g. (@) How much tension must the string be under if it is to vibrate

at a fundamental frequency of 131 Hz? (b) What are the frequencies of the
first four harmonics?

APPROACH To determine the tension, we need to find the wave speed using
Eq. 11-12 (¢ = Af), and then use Eq. 11-13, solving it for Fy.

SOLUTION (a) The wavelength of the fundamental is A = 2L = 2.20m
(Eq. 11-19a with n = 1). The speed of the wave on the string is
v = Af = (220m)(131s7') = 288 m/s. Then we have (Eq. 11-13)

mo (0.00 X 107 kg

Fo=—v' = [10m (288 m/s)* = 6T9N.

1
L
(b) The frequencies of the second, third, and fourth harmonics are two, three,
and four times the fundamental frequency: 262, 393, and 524 Hz,
NOTE The speed of the wave on the string is not the same as the speed of the
sound that is produced in the air (as we shall see in Chapter 12).

"The term “harmonic™ comes from music, because such integral multiples of frequencies “harmonize.”
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