* Speed of Longitudinal Waves

The speed of a longitudinal wave has a form similar to that for a transverse wave on a cord (Eq. 11-13):

$$v = \sqrt{rac{ ext{elastic force factor}}{ ext{inertia factor}}}.$$

In particular, for a longitudinal wave traveling down a long solid rod,

Longitudinal wave speed in a long solid rod

$$v = \sqrt{\frac{E}{\rho}},$$
 (11–14a)

where E is the elastic modulus (Section 9-5) of the material and ρ is its density. For a longitudinal wave traveling in a liquid or gas,

Longitudinal wave speed in a fluid

$$v = \sqrt{\frac{B}{\rho}},\tag{11-14b}$$

where B is the bulk modulus (Section 9–5) and ρ is the density.

using sound waves

FIGURE 11-27 A toothed whale (Example 11-12).

EXAMPLE 11-12 Echolocation. Echolocation is a form of sensory perception used by animals such as bats, toothed whales, and porpoises. The animal emits a pulse of sound (a longitudinal wave) which, after reflection from objects, is detected by the animal. Echolocation waves emitted by whales (Fig. 11-27) have frequencies of about 200,000 Hz. (a) What is the wavelength of the whale's echolocation wave? (b) If an obstacle is 100 m from the whale, how long after the whale emits a wave is its reflection detected?

APPROACH We first compute the speed of longitudinal (sound) waves in sea water, using Eq. 11–14b and Tables 9–1 and 10–1. The wavelength is $\lambda = v/f$. **SOLUTION** (a) The speed of longitudinal waves in sea water, which is slightly more dense than pure water, is

$$v = \sqrt{\frac{B}{
ho}} = \sqrt{\frac{2.0 \times 10^9 \, \mathrm{N/m^2}}{1.025 \times 10^3 \, \mathrm{kg/m^3}}} = 1.40 \times 10^3 \, \mathrm{m/s}.$$

Then, using Eq. 11-12, we find

$$\lambda = \frac{v}{f} = \frac{(1.40 \times 10^3 \,\mathrm{m/s})}{(2.0 \times 10^5 \,\mathrm{Hz})} = 7.0 \,\mathrm{mm}.$$

(b) The time required for the round-trip between the whale and the object is

$$t = \frac{\text{distance}}{\text{speed}} = \frac{2(100 \text{ m})}{1.40 \times 10^3 \text{ m/s}} = 0.14 \text{ s}.$$

NOTE We shall see later that waves can "resolve" (or detect) objects only if the wavelength is comparable to or smaller than the object. Thus, a whale can resolve objects on the order of a centimeter or larger in size.

PHYSICS APPLIED Earthquake waves

Other Waves

Both transverse and longitudinal waves are produced when an earthquake occurs. The transverse waves that travel through the body of the Earth are called S waves (S for shear), and the longitudinal waves are called P waves (P for pressure) or compression waves. Both longitudinal and transverse waves can travel through a solid since the atoms or molecules can vibrate about their relatively fixed positions in any direction. But in a fluid, only longitudinal waves can propagate, because any transverse motion would experience no restoring force since a fluid is readily deformable. This fact was used by geophysicists to infer that a portion of the Earth's core must be liquid: after an earthquake, longitudinal waves are detected diametrically across the Earth, but not transverse waves.