* Velocity and Acceleration as Functions of Time

Figure 11–10a, like Fig. 11–8, shows a graph of displacement x vs. time t, as given by Eqs. 11–8. We can also find the velocity v as a function of time from Fig. 11–6a. For the position shown (red dot in Fig. 11–6a), we see that the magnitude of v is $v_{\text{max}} \sin \theta$, but $\vec{\mathbf{v}}$ points to the left, so $v = -v_{\text{max}} \sin \theta$. Again setting $\theta = \omega t = 2\pi f t = 2\pi t/T$, we have

$$v = -v_{\text{max}} \sin \omega t = -v_{\text{max}} \sin(2\pi f t) = -v_{\text{max}} \sin(2\pi t/T).$$
 (11-9)

Just after t=0, the velocity is negative (points to the left) and remains so until $t=\frac{1}{2}T$ (corresponding to $\theta=180^\circ=\pi$ radians). After $t=\frac{1}{2}T$ until t=T the velocity is positive. The velocity as a function of time (Eq. 11–9) is plotted in Fig. 11–10b. From Eqs. 11–6 and 11–7b,

$$v_{\rm max} = 2\pi A f = A \sqrt{\frac{k}{m}}$$

For a given spring-mass system, the maximum speed v_{max} is higher if the amplitude is larger, and always occurs as the mass passes the equilibrium point.

The acceleration as a function of time is found from Newton's second law:

$$a = \frac{F}{m} = \frac{-kx}{m} = -\left(\frac{kA}{m}\right)\cos\omega t = -a_{\text{max}}\cos(2\pi t/T)$$
 (11–10)

where the maximum acceleration is

$$a_{\text{max}} = kA/m$$
.

Equation 11–10 is plotted in Fig. 11–10c. Because the acceleration of a SHO is *not* constant, the equations for uniformly accelerated motion do *not* apply to SHM.

EXAMPLE 11–8 Loudspeaker. The cone of a loudspeaker vibrates in SHM at a frequency of 262 Hz ("middle C"). The amplitude at the center of the cone is $A = 1.5 \times 10^{-4}$ m, and at t = 0, x = A. (a) What equation describes the motion of the center of the cone? (b) What are the velocity and acceleration as a funcion of time? (c) What is the position of the cone at t = 1.00 ms (= 1.00×10^{-3} s)?

APPROACH The motion begins (t = 0) with the cone at its maximum displacement (x = A at t = 0). So we use the cosine function, $x = A \cos \omega t$, to describe this SHM.

SOLUTION (a) Here

$$\omega = 2\pi f = (6.28 \text{ rad})(262 \text{ s}^{-1}) = 1650 \text{ rad/s}.$$

The motion is described as

$$x = A\cos(2\pi ft) = (1.5 \times 10^{-4} \,\mathrm{m})\cos(1650t).$$

(b) The maximum velocity, from Eq. 11-6, is $v_{\text{max}} = 2\pi A f = 2\pi (1.5 \times 10^{-4} \text{ m})(262 \text{ s}^{-1}) = 0.25 \text{ m/s}$. Then by Eq. 11-9,

$$v = -(0.25 \text{ m/s}) \sin(1650t).$$

From Eqs. 11–10 and 11–7b, the maximum acceleration is $a_{\text{max}} = (k/m)A = (2\pi f)^2 A = 4\pi^2 (262 \text{ s}^{-1})^2 (1.5 \times 10^{-4} \text{ m}) = 410 \text{ m/s}^2$, which is more than 40 g/s. So

$$a = -(410 \text{ m/s}^2)\cos(1650t).$$

(c) At $t = 1.00 \times 10^{-3}$ s, Eq. 11-8a gives us

$$x = A \cos \omega t = (1.5 \times 10^{-4} \text{ m}) \cos[(1650 \text{ rad/s})(1.00 \times 10^{-3} \text{ s})]$$

= $(1.5 \times 10^{-4} \text{ m}) \cos(1.65 \text{ rad}) = -1.2 \times 10^{-5} \text{ m}.$

NOTE Be sure your calculator is set in RAD mode, not DEG mode, for these $\cos \omega t$ calculations.

FIGURE 11–10 Graphs showing (a) displacement x as a function of time t: $x = A\cos(2\pi t/T)$; (b) velocity as a function of time: $v = -v_{\text{max}}\sin(2\pi t/T)$; (c) acceleration as a function of time: $a = -(kA/m)\cos(2\pi t/T)$.

Always be sure your calculator is in the correct mode for angles