

FIGURE 10-8 Pressure gauges: (a) open-tube manometer, (b) aneroid gauge, and (c) common tire pressure gauge.

height  $\Delta h$  of the two levels of the liquid by the relation

$$P = P_0 + \rho g \, \Delta h, \tag{10-3c}$$

where  $P_0$  is atmospheric pressure (acting on the top of the liquid in the left-hand tube), and  $\rho$  is the density of the liquid. Note that the quantity  $\rho g \Delta h$  is the gauge pressure—the amount by which P exceeds atmospheric pressure  $P_0$ . If the liquid in the left-hand column were lower than that in the right-hand column, P would have to be less than atmospheric pressure (and  $\Delta h$  would be negative).

Instead of calculating the product  $\rho g \Delta h$ , sometimes only the change in height  $\Delta h$  is specified. In fact, pressures are sometimes specified as so many "millimeters of mercury" (mm-Hg) or "mm of water" (mm-H2O). The unit mm-Hg is equivalent to a pressure of 133 N/m<sup>2</sup>, since  $\rho g \Delta h$  for 1 mm = 1.0 × 10<sup>-3</sup> m of mercury gives

$$\rho g \Delta h = (13.6 \times 10^3 \text{ kg/m}^3)(9.80 \text{ m/s}^2)(1.00 \times 10^{-3} \text{ m}) = 1.33 \times 10^2 \text{ N/m}^2.$$

The unit mm-Hg is also called the torr in honor of Evangelista Torricelli (1608-1647), a student of Galileo's who invented the barometer (see below). Conversion factors among the various units of pressure (an incredible nuisance!) are given in Table 10-2. It is important that only  $N/m^2 = Pa$ , the proper SI unit, be used in calculations involving other quantities specified in SI units.

Another type of pressure gauge is the aneroid gauge (Fig. 10-8b) in which the pointer is linked to the flexible ends of an evacuated thin metal chamber. In an electronic gauge, the pressure may be applied to a thin metal diaphragm whose resulting distortion is translated into an electrical signal by a transducer. How a common tire gauge is constructed is shown in Fig. 10-8c.

TABLE 10-2 Conversion Factors Between Different Units of Pressure

| In Terms of $1 \text{ Pa} = 1 \text{ N/m}^2$                         | 1 atm in Different Units                                                      |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| $1 \text{ atm} = 1.013 \times 10^5 \text{N/m}^2$                     | $1 \text{ atm} = 1.013 \times 10^5 \text{N/m}^2$                              |
| $= 1.013 \times 10^5 \mathrm{Pa} = 101.3 \mathrm{kPa}$               |                                                                               |
| $1 \text{ bar} = 1.000 \times 10^5 \text{N/m}^2$                     | 1  atm = 1.013  bar                                                           |
| $1  \mathrm{dyne/cm^2} = 0.1  \mathrm{N/m^2}$                        | $1 \text{ atm} = 1.013 \times 10^6  \text{dyne/cm}^2$                         |
| $1 \text{ lb/in.}^2 = 6.90 \times 10^3 \text{ N/m}^2$                | $1 \text{ atm} = 14.7  \text{lb/in.}^2$                                       |
| $1 \text{ lb/ft}^2 = 47.9 \text{ N/m}^2$                             | $1 \text{ atm} = 2.12 \times 10^3  \text{lb/ft}^2$                            |
| $1 \text{ cm-Hg} = 1.33 \times 10^3 \text{ N/m}^2$                   | 1 atm = 76 cm-Hg                                                              |
| $1 \text{ mm-Hg} = 133 \text{ N/m}^2$                                | 1  atm = 760  mm-Hg                                                           |
| $1 torr = 133 N/m^2$                                                 | 1  atm = 760  torr                                                            |
| $1 \text{ mm-H}_2\text{O } (4^{\circ}\text{C}) = 9.81 \text{ N/m}^2$ | $1 \text{ atm} = 1.03 \times 10^4 \text{ mm-H}_2\text{O} (4^{\circ}\text{C})$ |

Pressure beneath surface of liquid open to the atmosphere

The torr (unit of pressure)

PROBLEM SOLVING Use SI unit in calculations:

 $1 \text{ Pa} = 1 \text{ N/m}^2$