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FIGURE 9-29 Stones in a round
(or “true™) arch are mainly under
compression.

FIGURE 9-30 Flying buttresses
(on the cathedral of Notre Dame, in
Paris).

FIGURE 9-31

Forces in (a) a
round arch, compared with those
in (b) a pointed arch.
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The advantage of the “true” or round (semicircular) arch is that, if well designed,
its wedge-shaped stones experience stress which is mainly compressive (Fig, 9-29)
even when supporting a large load such as the wall and roof of a cathedral.
A round arch consisting of many well-shaped stones could span a very wide
space. However, considerable buttressing on the sides was needed to support
the horizontal components of the forces, which we discuss shortly.

The pointed arch came into use about A.n. 1100 and became the hallmark
of the great Gothic cathedrals. It too was an important technical innovation, and
was first used to support heavy loads such as the tower of a cathedral, and as
the central arch. Because of the steepness of the pointed arch, the forces due to
the weight above could be brought down more nearly vertically, so less hori-
zontal buttressing would be needed. The pointed arch reduced the load on the
walls, so there could be more openness and light. The smaller buttressing
needed was provided on the outside by graceful flying buttresses (Fig. 9-30).

The technical innovation of the pointed arch was achieved not through
calculation but through experience and intuition; it was not until much later that
detailed calculations, such as those presented earlier in this Chapter, came into
use. To make an accurate analysis of a stone arch is quite difficult in practice.
But if we make some simplifying assumptions, we can show why the horizontal
component of the force at the base is less for a pointed arch than for a round
one. Figure 9-31 shows a round arch and a pointed arch, each with an 8.0-m
span. The height of the round arch is thus 4.0 m, whereas that of the pointed
arch is larger and has been chosen to be 8.0 m. Each arch supports a weight of
12.0 % 10°N (=12,000 kg * g), which, for simplicity, we have divided into two
parts (each 6.0 > 10° N) acting on the two halves of each arch as shown. For the
arch to be in equilibrium, each of the supports must exert an upward force of
6.0 > 10° N, Each support also exerts a horizontal force, Fy;, at the base of the
arch, and it is this we want to calculate. We focus only on the right half of each
arch. We set equal to zero the total torque calculated about the apex of the arch
due to the forces exerted on that half arch, as if there were a hinge at the apex.
For the round arch, the torque equation (=7 = 0} is

(4.0m)(6.0 x 10*°N) — (2.0 m)(6.0 x 10°N) — (4.0m)(Fy) = 0.

Thus Fy = 3.0 X 10*N for the round arch. For the pointed arch, the torque
equation is

(4.0m)(6.0 x 10*N) — (2.0m)(6.0 x 10°N) — (8.0m)(Fy) = 0.

Solving, we find that Fy = 1.5 % 10° N—only half as much as for the round
arch! From this calculation we can sce that the horizontal buttressing force
required for a pointed arch is less because the arch is higher, and there is there-
fore a longer lever arm for this force. Indeed, the steeper the arch, the less the
horizontal component of the force needs to be, and hence the more nearly
vertical is the force exerted at the base of the arch.
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