9-4 Stability and Balance An object in static equilibrium, if left undisturbed, will undergo no translational or rotational acceleration since the sum of all the forces and the sum of all the torques acting on it are zero. However, if the object is displaced slightly, three outcomes are possible: (1) the object returns to its original position, in which case it is said to be in **stable equilibrium**; (2) the object moves even farther from its original position, and it is said to be in **unstable equilibrium**; or (3) the object remains in its new position, and it is said to be in **neutral equilibrium**. Stable and unstable equilibria Consider the following examples. A ball suspended freely from a string is in stable equilibrium, for if it is displaced to one side, it will return to its original position (Fig. 9–15a) due to the net force and torque exerted on it. On the other hand, a pencil standing on its point is in unstable equilibrium. If its center of gravity is directly over its tip (Fig. 9–15b), the net force and net torque on it will be zero. But if it is displaced ever so slightly as shown—say, by a slight vibration or tiny air current—there will be a torque on it, and this torque acts to make the pencil continue to fall in the direction of the original displacement. Finally, an example of an object in neutral equilibrium is a sphere resting on a horizontal tabletop. If it is placed slightly to one side, it will remain in its new position—no net torque acts on it. FIGURE 9-15 (a) Stable equilibrium, and (b) unstable equilibrium. FIGURE 9-16 Equilibrium of a refrigerator resting on a flat floor. FIGURE 9-17 Humans adjust their posture to achieve stability when carrying loads. In most situations, such as in the design of structures and in working with the human body, we are interested in maintaining stable equilibrium, or balance, as we sometimes say. In general, an object whose center of gravity (CG) is below its point of support, such as a ball on a string, will be in stable equilibrium. If the CG is above the base of support, we have a more complicated situation. Consider a standing refrigerator (Fig. 9-16a). If it is tipped slightly, it will return to its original position due to the torque on it as shown in Fig. 9-16b. But if it is tipped too far, Fig. 9-16c, it will fall over. The critical point is reached when the CG shifts from one side of the pivot point to the other. When the CG is on one side, the torque pulls the object back onto its original base of support, Fig. 9-16b. If the object is tipped further, the CG goes past the pivot point and the torque causes the object to topple, Fig. 9-16c. In general, an object whose center of gravity is above its base of support will be stable if a vertical line projected downward from the CG falls within the base of support. This is because the normal force upward on the object (which balances out gravity) can be exerted only within the area of contact, so if the force of gravity acts beyond this area, a net torque will act to topple the object. Stability, then, can be relative. A brick lying on its widest face is more stable than a brick standing on its end, for it will take more of an effort to tip it over. In the extreme case of the pencil in Fig. 9–15b, the base is practically a point and the slightest disturbance will topple it. In general, the larger the base and the lower the CG, the more stable the object. In this sense, humans are much less stable than four-legged mammals, which not only have a larger base of support because of their four legs, but also have a lower center of gravity. When walking and performing other kinds of movement, a person continually shifts the body so that its CG is over the feet, although in the normal adult this requires no conscious thought. Even as simple a movement as bending over requires moving the hips backward so that the CG remains over the feet, and you do this repositioning without thinking about it. To see this, position yourself with your heels and back to a wall and try to touch your toes. You won't be able to do it without falling. Persons carrying heavy loads automatically adjust their posture so that the CG of the total mass is over their feet, Fig. 9–17.