for $F_{\rm H}$ is zero, and the torque equation $(\Sigma \tau = 0)$ becomes

$$-mg(1.10 \text{ m}) - Mg(2.20 \text{ m}) + F_{Tv}(2.20 \text{ m}) = 0.$$

We solve this for F_{Ty} and find

$$F_{\text{Ty}} = \frac{m}{2} g + Mg = (12.5 \text{ kg} + 28.0 \text{ kg})(9.80 \text{ m/s}^2) = 397 \text{ N}.$$

We get the same result, within the precision of our significant figures.

NOTE It doesn't matter which axis we choose for $\Sigma \tau = 0$. Using a second axis can serve as a check.

Additional Example—The Ladder

EXAMPLE 9-7 Ladder. A 5.0-m-long ladder leans against a wall at a point 4.0 m above a cement floor as shown in Fig. 9-11. The ladder is uniform and has mass m = 12.0 kg. Assuming the wall is frictionless (but the floor is not), determine the forces exerted on the ladder by the floor and by the wall.

APPROACH Figure 9-11 is the free-body diagram for the ladder, showing all the forces acting on the ladder. The wall, since it is frictionless, can exert a force only perpendicular to the wall, and we label that force $\vec{\mathbf{F}}_{\mathrm{W}}$. The cement floor exerts a force \vec{F}_C which has both horizontal and vertical force components: F_{Cx} is frictional and F_{Cy} is the normal force. Finally, gravity exerts a force $mg = (12.0 \text{ kg})(9.80 \text{ m/s}^2) = 118 \text{ N}$ on the ladder at its midpoint, since the ladder is uniform.

SOLUTION Again we use the equilibrium conditions, $\Sigma F_x = 0$, $\Sigma F_y = 0$, $\Sigma \tau = 0$. We will need all three since there are three unknowns: F_W , F_{Cx} , and F_{Cy} . The y component of the force equation is

$$\Sigma F_y = F_{Cy} - mg = 0,$$

so immediately we have

$$F_{\text{Cv}} = mg = 118 \,\text{N}.$$

The x component of the force equation is

$$\Sigma F_x = F_{Cx} - F_W = 0.$$

To determine both F_{Cx} and F_W , we need a torque equation. If we choose to calculate torques about an axis through the point where the ladder touches the cement floor, then \vec{F}_C , which acts at this point, will have a lever arm of zero and so won't enter the equation. The ladder touches the floor a distance $x_0 = \sqrt{(5.0 \text{ m})^2 - (4.0 \text{ m})^2} = 3.0 \text{ m}$ from the wall. The lever arm for mg is half this, or 1.5 m, and the lever arm for $F_{\rm W}$ is 4.0 m, Fig. 9–11. We get

$$\Sigma \tau = (4.0 \text{ m}) F_{\text{W}} - (1.5 \text{ m}) mg = 0.$$

Thus

$$F_{\rm W} = \frac{(1.5 \text{ m})(12.0 \text{ kg})(9.8 \text{ m/s}^2)}{4.0 \text{ m}} = 44 \text{ N}.$$

Then, from the x component of the force equation,

$$F_{\rm Cx} = F_{\rm W} = 44 \, \rm N.$$

Since the components of \vec{F}_C are $F_{Cx} = 44 \text{ N}$ and $F_{Cy} = 118 \text{ N}$, then

$$F_{\rm C} = \sqrt{(44 \, {\rm N})^2 + (118 \, {\rm N})^2} = 126 \, {\rm N} \approx 130 \, {\rm N}$$

(rounded off to two significant figures), and it acts at an angle to the floor of

$$\theta = \tan^{-1}(118 \text{ N}/44 \text{ N}) = 70^{\circ}.$$

NOTE The force $\vec{\mathbf{F}}_{C}$ does *not* have to act along the ladder's direction because the ladder is rigid and not flexible like a cord or cable.

EXERCISE D Why is it reasonable to ignore friction along the wall, but not reasonable to ignore it along the floor?

FIGURE 9-11 A ladder leaning against a wall. Example 9-7.