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FIGURE 8-28 A skater doing a
spin on ice, illustrating conservation
of angular momentum. In (a). I is
large and w is small; in (b). ] is
smaller so w is larger.
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Spins in figure skating and diving

FIGURE 8-29 A diver rotates
faster when arms and legs are tucked
in than when they are outstretched.
Angular momentum is conserved.

FIGURE 8-30 Example 8-15.

The parts of the object may alter their positions relative to one another, so T
changes. But then w changes as well to ensure that the product /e remains constant.
Many interesting phenomena can be understood on the basis of conserva-
tion of angular momentum. Consider a skater doing a spin on the tips of her
skates, Fig. 8-28. She rotates at a relatively low speed when her arms are
outstretched; when she brings her arms in close to her body, she suddenly spins
much faster. From the definition of moment of inertia, T = Zmr?, it is clear
that when she pulls her arms in closer to the axis of rotation, r is reduced for the
arms, so her moment of inertia is reduced. Since the angular momentum Jw
remains constant (we ignore the small torque due to friction), if T decreases,
then the angular velocity @ must increase. If the skater reduces her moment of
inertia by a factor of 2, she will then rotate with twice the angular velocity.
EXERCISE C When a spinning figure skater pulls in her arms, her moment of inertia
decreases; to conserve angular momentum, her angular velocity increases. Does her
rotational kinetic energy also increase? If so, where does the energy come from?

A similar example is the diver shown in Fig. 8-29. The push as she leaves
the board gives her an initial angular momentum about her center of mass.
When she curls herself into the tuck position, she rotates quickly one or more
times. She then stretches out again, increasing her moment of inertia which
reduces the angular velocity to a small value, and then she enters the water. The
change in moment of inertia from the straight position to the tuck position can
be a factor of as much as 3.

Note that for angular momentum to be conserved, the net torque must be
zero, but the net force does not ncccssarily have to be zero. The net force on the
diver in Fig. 8-29. for example, is not zero (gravity is acting). but the net torque
on her is zero because the force of gravity acts at her center of mass,

Object rotating on a string of changing length. A
small mass m attached to the end of a siring revolves in a circle on a friction-
less tabletop. The other end of the string passes through a hole in the table
(Fig. 8-30). Initially, the mass revolves with a speed v, = 2.4m/s in a circle of
radius r; = 0.80 m. The string is then pulled slowly through the hole so that
the radius is reduced to r, = 0.48 m. What is the speed, v,, of the mass now?

APPROACH There is no net torque on the mass m because the force exerted
by the string to keep it moving in a circle is exerted toward the axis; hence the
lever arm is zero. We can thus apply conservation of angular momentum,

SOLUTION Conservation of angular momentum gives
11 ay = !2(!) 2.

Our small mass is essentially a particle whose moment of inertia about the
hole is T = mr? (Section 8-5, Eq. 8-11), so we have

mriw, = mriw,,

2
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Then, since v = rw, we can write

or

ri v (i r
Vy = oy = oy F = ?’:_r—l F — '-bj;
' o *o.som) -
= (24mfs)(0.48 # 4.0m/s

The speed increases as the radius decreases.

EXERCISE D The speed of mass m in Example 8-15 increased, so its kinetic energy
increased. Where did the energy come from?
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