Consider any rigid rotating object as made up of many tiny particles, each
of mass m. If we let r represent the distance of any one particle from the axis of
rotation, then its linear velocity is » = rw. The total kinetic energy of the
whole object will be the sum of the kinetic energies of all its particles:

KE = Z(3mv’) = Z(imr’e’)
- %E(’m’z Jeu,

We have factored out the 1 and the «’ since they are the same for every particle
of a rigid object. Since Tmr® = I, the moment of inertia, we see that the
kinetic energy of a rigid rotating object is, as expected,

rotational KE = 3 Jw’. (8-15)  Rowtional ki

The units are joules, as with all other forms of energy.

An object that rotates while its center of mass (CM) undergoes translational
maotion will have both translational and rotational kinetic energies. Equation 8-15
gives the rotational kinetic energy if the rotation axis is fixed. It the object is
moving (such as a wheel rolling down a hill), this equation is still valid as long as
the rotation axis is fixed in direction. Then the total kinetic energy is

KE = %;Wlf'(z;u + %[[-sz, (8-16) Toral KE (translation + rotation)
where v, is the linear velocity of the center of mass, I, is the moment of

inertia about an axis through the center of mass, @ is the angular velocity about
this axis, and M is the total mass of the object,

Sphere rolling down an incline. What will be the speed
of a solid sphere of mass M and radius R when it reaches the bottom of an
incline if it starts from rest at a vertical height H and rolls without slipping?
See Fig. 8-24. (Assume plenty of static friction, which does no work, so no
slipping takes place.) Compare your result to that for an object sliding down a
frictionless incline. kS

APPROACH We use the law of conservation of energy with gravitational poten-
tial energy, now including rotational kinetic energy as well as translational Ke. ~ FIGURE 8-24 A sphere rolling

SOLUTION The total energy at any point a vertical distance y above the base  90%n @ hill has both translational
of the ncline i and rotational kinetic energy.

Example 8-13.
EM + oo + Mgy,

where v is the speed of the center of mass, and Mgy is the gravitational PE. ™ PROBLEM SOLVING
Applying conservation of energy, we equate the total energy at the top  Rowwonal energy adds

(v=H,v=0o=0)to the total energy at the bottom {v = 0}): to other forms of energy
I & i 5 to get the total energy
0+ 0+ MgH =5Mv" + 515w + 0. which is conserved

The moment of inertia of a solid sphere about an axis through its center of
mass is Iy = $MR’, Fig. 8-2le. Since the sphere rolls without slipping, we
have @ = v/R (recall Fig. 8-8). Hence
§ ] B
A@H=%Mw+§GMkKEﬂ-

Canceling the M’s and R’s, we obtain

(5 + 5h* = gH
or

v=\YeH.

We can compare this result for the speed of a rolling sphere to that for
an object sliding down a plane without rotating and without friction,
tmv’ = mgH (see our energy equation above, removing the rotational term).
Then © = \/2gH, which is greater than our result. An object sliding without
friction or rotation transforms its initial potential energy entirely into transla-
tional KE (none into rotational KE), so the speed of its center of mass is greater.
NOTE Our result for the rolling sphere shows (perhaps surprisingly) that v is
independent of both the mass M and the radius R of the sphere.
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