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FIGURE 8-23 FExample 8-12.
(a) Pulley and falling bucket of
mass m. (b) Free-body diagram for
the bucket.

Additional Example—a bit more challenging

Pulley and bucket. Consider again the pulley in
Fig. 8-22 and Example 8—11. But this time, instead of a constant 15.0-N force
being exerted on the cord, we now have a bucket of weight w = [5.0N (mass
m = w/g = 1.53kg) hanging from the cord. See Fig. 8-23a. We assume the
cord has negligible mass and does not stretch or slip on the pulley. Calculate the
angular acceleration a of the pulley and the linear acceleration a of the bucket.

APPROACH This situation looks a lot like Example 8-11, Fig. 8-22. But there
is a big difference: the tension in the cord is now an unknown, and it is no
longer equal to the weight of the bucket if the bucket accelerates. Our system
has two parts: the bucket, which can undergo translational motion (Fig. 8-23b
is its free-body diagram); and the pulley. The pulley does not translate, but it
can rotate. We apply the rotational version of Newton's second law to the
pulley, £7 = [, and the linear version to the bucket, £F = ma.
SOLUTION Let Fy be the tension in the cord. Then a force Fyacts at the edge of the
pulley, and we apply Newton's second law, Eq. 814, for the rotation of the pulley:

Ia = 7= RFy — 7. [pulley]
Next we look at the (linear) motion of the bucket of mass m. Figure 8-23b, the
Iree-body diagram for the buckel, shows that two forces act on the bucket:
the force of gravily mg acts downward, and the tension of the cord Fy pulls
upward. Applying Newton's second law, £F = ma, for the bucket, we have
(taking downward as positive):

mg — Fy = ma. [bucket]
Note that the tension F;, which is the force exerted on the edge of the pulley,
is nor equal to the weight of the bucket (= mg = 15.0N). There must be a net
force on the bucket if it is accelerating, so F; <= mg. We can also see this from
the last equation above, Fy = mg — ma.

To obtain @, we note that the tangential acceleration of a point on the
edge of the pulley is the same as the acceleration of the bucket if the cord
doesn’t stretch or slip. Hence we can use Eq. 8-3, a,, = a = Ra. Subslituting
Fr = mg — ma = mg — mRa into the lirst equation above (Newton’s second
law for rotation of the pulley), we obtain

la = 21 = RF; — 7 = R(mg — mRa) — 7, = mgR - mR’a — 7.
« appears in the second term on the right, so we bring that term to the left side
and solve for a:
mgR — 7
I+ mR’
The numerator (mgR — 74 is the net torque, and the denominator (I + mR?)
is the total rotational inertia of the system. Then, since I = 0.385 kg-m’,
m = 1.53kg, and 7, = [.L10m-N (from Example 8-11),
(15.0N)(0.330m) — L.1I0m-N
¢ 0385kg-m® + (1.53kg)(0330m)?
The angular acceleration is somewhat less in this case than the 10.0 rad/s® of
Example 8-11. Why? Because F; (=mg — ma) is less than the 15.0-N weight
of the bucket, mg. The linear acceleration of the bucket is
a = Ra = (0.330m)(6.98 rad/s’) = 2.30 m/s’.
NOTE The tension in the cord Fy is less than mg because the bucket accelerates

Rotational Kinetic Energy

The quantity 3mv’ is the kinetic energy of an object undergoing translational
motion. An object rotating about an axis is said to have rotational kinetic
energy. By analogy with translational kinetic energy, we would expect this to be
given by the expression 3 1w’, where T is the moment of inertia of the object and
w is its angular velocity. We can indeed show that this is true.

o =

= 6.98 rad/s%.
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