Axis of
rotation

FIGURE 8-17 Only the compo-
nent of F that acts in the plane

perpendicular to the rotation axis, F, .
acts to turn the wheel about the axis.

The component parallel to the

axis, F, would tend to move the axis
itself, which we assume is held fixed.

FIGURE 8-18 A mass m rotating
in a circle of radius r about a fixed

point.
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* Forces that Act to Tilt the Axis

We are considering only rotation about a fixed axis, and so we consider only
forces that act in a plane perpendicular to the axis of rotation. If there is a force
(or component of a force) acting parallel to the axis of rotation, it will tend to
tilt the axis of rotation—the component FII in Fig. 8-17 is an example. Since we
are assuming the axis remains fixed in direction, either there can be no such
forces or else the axis must be mounted in bearings or hinges that hold the axis
fixed. Thus, only a force, or component of a force (F, in Fig. 8-17), in a plane
perpendicular to the axis will give rise to rotation about the axis, and it is only
these that we consider,

Rotational Dynamics; Torque and
Rotational Inertia

We have discussed that the angular acceleration e of a rotating object is propor-
tional to the net torque 7 applied to it:
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where we write 7 to remind us’ that it is the ner torque (sum of all torques
acting on the object) that is proportional to «. This corresponds to Newton’s
second law for translational motion, a x ZF, but here torque has taken the
place of force, and, correspondingly, the angular acceleration a takes the place
of the linear acceleration a. In the linear case, the acceleration is not only
proportional to the net force, but it is also inversely proportional to the inertia
of the object, which we call its mass, m. Thus we could write @ = ZF/m. But
what plays the role of mass for the rotational case? That is what we now set out
to determine. At the same time, we will see that the relation « ~ 27 follows
directly from Newton's second law, £F = ma.

We first consider a very simple case: a particle of mass m rotating in a circle
of radius r at the end of a string or rod whose mass we can ignore compared to m
(Fig. 8—18), and we assume a single force F acts on m as shown. The torque that
gives rise to the angular acceleration is 7 = rF. If we use Newton’s second law
for linear quantities, £F = ma, and Eq. 8-5 relating the angular acceleration
to the tangential linear acceleration, a,,, = ra, then we have

F = ma

= mru.

When we multiply both sides of this equation by r, we find that the torque
T = rF is given by

T = mria [single particle] (8-11)

Here at last we have a direct relation between the angular acceleration and the
applied torque 7. The quantity mr® represents the rotational inertia of the
particle and is called its moment of inertia.

Now let us consider a rotating rigid object, such as a wheel rotating about an
axis through its center, which could be an axle. We can think of the wheel as
consisting of many particles located at various distances from the axis of rotation.
We can apply Eq. 8-11 to each particle of the object, and then sum over all the
particles. The sum of the various torques is just the total torque, X7, so we obtain:

2r = (Emri)a (8-12)

where we factored out « because it is the same for all the particles of the object.
The sum Zm’ represents the sum of the masses of each particle in the object
multiplied by the square of the distance of that particle from the axis of

"Recall from Chapter 4 that £ (Greek letter sigma) means “sum of.”
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